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Bayesian inference

The classical frequentist techniques of inference are not, in fact, "classical™ at all, but relative
newcomers in the long history of statistical inference. Before the 1920s, another approach to
statistical inference was in general use, based on a result that flows directly from the axioms of
probability. As such, this approach has solid theoretical foundations, produces intuitive, readily-
understood measures of "significance”, and remains as valid today as it did before it was eclipsed by
the flawed attempts of Fisher ef al. to create an objective theory of statistical inference. It is known
as Bayesian inference, after the 18th Century English cleric Thomas Bayes who first published the
key theorem behind it: Bayes’s theorem.

The power and importance of this theorem is immediately apparent in its solution to one of the
central problems of standard statistical inference. As we have seen, frequentist methods do not tell us
Prob(theory | data); that is, they do not tell us what our belief in a theory should be, given the data we
actually saw. To answer that question, we must turn o the axioms of probability theory, from which
we find that (see, e.g. Feller 1968 Ch 5):

Prob(A|B) = Frob(B | 4).Prob(A) Prob(B) (e

This is Bayes’s theorem, which becomes the basis of Bayesian inference when "A" is the event of a
specific hypothesis being true, and "B" as the event of observing specific data. Bayesian inference
was the standard means of performing statistical inference prior to Fisher’s work in the 1920s, and it
allows us to calculate a clear and unambiguous measure of support for a theory, Prob(theory | data)
directly from experimental results via the relationship:

Probitheory |data} = Prob(data |theory).Probtheory) /Probidata) (2)

This formulation of Bayes’s theorem shows clearly that while we can calculate the quantity we are
interested in, namely Prob(theory | data), this is not equivalent to Prob(data | theory), much less to a
P-value. However, the formula also highlights the key stumbling-block to the application of
Bayesian inference. To work out the value of Prob(theory | data), we must first establish Prob
(theory); that is, we must be able to put some "prior probability” on the theory we are testing. As 1
shall show later, setting this prior probability is often far less problematic than some critics claim: it
is rare that there are absolutely no previous findings or plausibility arguments available to constrain
our estimate. Tt remains true, nevertheless, that in those cases where there is a complete absence of
any previous results or insight, the prior probability of the correctness of the hypothesis will be based
largely on opinion. In short, it will be subjective.
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It is this unequivocal use of subjectivity that has made Bayesian inference so controversial, and has
led to such determined attempts to find alternatives. As we have seen, working scientists may
routinely use subjectivity when it suits them, but the idea of explicitly incorporating it into the very
heart of data analysis remains anathema. But this attitude overlooks a striking fact about the
scientific process: that all attempts to rid it of subjectivity have failed. By the usual standards of
scientific research, the repeated failure of these attempts would be taken to imply that the basic thesis
was flawed. And from (2) we now see that this would, indeed, be the correct conclusion to draw. For
the axioms of probability, via Bayes’s theorem, show that subjectivity cannot be wrung out of the
scientific process for the simple reason that it is mathematically ineluctable. Much as we might want
to, it is impossible to obtain the value of Prob(theory | data) without having some value for the prior
probability Prob(theory).

The plain fact is that subjectivity in statistical inference is as unavoidable as uncertainty in quantum
mechanics. Yet while we have all grown accustomed to the latter - not least because of the welter of
theoretical and empirical support for its existence - there remains a deep-seated reluctance to
embrace the presence of subjectivity in scientific research.

We have seen that this reluctance stems in part from concern about playing into the hands of the
"enemies" of science, and also from past abuses in the application of subjectivity. Further barriers
exist to the adoption of Bayesian methods in data analysis, however. Some of these are entirely
pragmatic: it is undoubtedly harder to boil down Bayesian inference to the same "cook-book"
approach used in standard frequentist methods. Except in simple cases, Bayesian inference is also
more mathematically and computationally demanding than frequentist methods. The dearth of
textbooks and software suitable for the non-specialist wanting to carry out real-life data analysis does
nothing to helps (see, however, O’Hagan 1997).

None of this would matter, however, were the working scientist convinced that the effort involved in
getting to grips with Bayesian methods was worthwhile. This leads one to suspect that there are
other, more fundamental reasons for the failure of Bayesian inference to regain its primacy over
frequentist methods.

First, advocates of Bayesian inference have failed to tackle the widely held belief that Bayesian prior
probabilities are never more than wholly subjective guesses, "plucked out of the air” to suit some or
other prejudice or preconception. It cannot be stressed too highly that only rarely will there be
absolutely nothing on which to base a reasonable prior. In many cases, there will be sources of
evidence on which to base a sensible prior probability: for example, results from previous studies of
similar drugs and plausibility arguments concerning, say, cancer risks from radiation based on
insights from physics. Even if there really is little solid evidence on which to base a prior probability,
Bayesian inference can still provide insight by allowing one to study the effect of different levels of
prior belief (see, e.g. Spiegelhalier er al. 1994). It is also possible to invert Bayes’s theorem, and
estimate what prior belief is needed for data to reach a given level of plausibility; I give examples of
such "inverse Bayesian inference” below.

The second key feature of Bayesian inference that is not sufficiently appreciated is that initial prior
beliefs in a specific hypothesis become progressively less important as data accumulate. It can be
shown mathematically (see, e.g. O’Hagan 1994 p 74 et seq.) that whatever prior probability is used
at the outset, Bayes’s theorem ensures that everyone is driven towards the same conclusion as the
data accumulate. Unless one’s prior is precisely zero (which is not a rational stance), the only long-
term effect of the prior belief is that a sceptic starting from a low prior probability will require more
data to reach the same level of belief as an enthusiast for the theory - which is hardly an egregious
feature of a theory of inference. Indeed, it is striking that this mathematical feature of Bayesian
inference mirrors so well how science actually operates. Starting from a wide variety of opinions
about, say, the link between some chemical and cases of cancer, the accumutation of experimental
and epidemiological evidence drives the scientific community toward the same conclusion about the
reality or otherwise of the link, with sceptics merely taking longer to be convinced.
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In short, Bayesian inference provides a coherent, comprehensive and strikingly intuitive alternative
to the flawed frequentist methods of statistical inference. It leads to results that are more easily
interpreted, more useful, and which more accurately reflect the way science actually proceeds. It is,
moreover, unique in its ability to deal explicitly and reliably with the provably ineluctable presence
of subjectivity m science.

These features alone should motivate many working scientists to tind out more about applying
Bayesian inference in their own research. For those who still need to be convinced, however, I now
demonstrate perhaps the most impressive reason for using Bayesian inference: its ability to provide a
far greater level of protection than frequentist methods against seeing "significance” in entirely -
spurious research findings. For as we shall see, while frequentist methods are still widely used within
the scientific community, they routinely exaggerate the real significance of implausible data, with
results that can and do bring the scientific process into disrepute.

How P-values exaggerate significance

As we have seen, frequentist methods of inference provide measures of significance that are neither
objective nor intuitive. More importantly, however, they give a fundamentally misleading view of
the significance of data. To see this, take the simple case in which a hypothesis is to be tested via
measurements of a specific parameter, 0 ; for example, the hypothesis may be that a toxin is linked
to some disorder in children, so that 6 is the level of this toxin in children suffering from the
disorder. Such an investigation would then consist of measuring values of 6 in a group of affected
children, 6 ;, computing the data mean and variance, and comparing it with 6,), the value of 6 found

among normal children. We would then test the "null" hypothesis that any difference we find is
merely the result of chance by setting up a test-statistic, z, which takes into account the sample size,

its mean and variance, and compares it to 8, the value expected if the null hypothesis is correct.

Following the frequentist approach, one would typically convert this z-score to a P-value, the
probability of obtaining at least as large a value of z, assuming the null hypothesis that chance alone
is the cause. According to convention, if the P-value is less than 0.05, then the data are taken fo be
"significant”.

However, as we have seen, a much more meaningful measure of "significance” is Prob(Null
hypothesis | data), the probability that the difference in Breally is the product of chance alone. Just
how big is the disparity between this measure of significance and the frequentist P-value ? To find
out, we can use Bayes’s theorem (2), which with a little algebra becomes

4

Prob(Wull hypothesis |data) = {] + 1= Prob(Null) }

= . 3)
rob{Null) BF

where Prob(Null) is the prior probability for the null hypothesis that there is no real difference in the
toxin level in the children, and BF is the so-called Bayes Factor, which measures how much we
should alter our prior belief about the null hypothesis in the light of the new data, as captured by z.
For the value of the Bayes Factor, one can show (see, e.g. Lee pl131) that under very general
conditions BF has a lower limit of

BF > exp(-2°2/2) (4)

As an example, suppose that past evidence concerning the toxin leads us to an agnostic view of the
possibility that there are higher levels of the toxin in the children with the disorder; this is equivalent
to setting Prob(Null) = 0.5. Inserting this and (4) into (3) we find that, for a given value of z, our
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initial agnosticism leads us to a probability that the null hypothesis of no real difference is indeed
correct of af Jeast

Prob(®ull hypothasis |data) 2 {1+ exp(z® 1 )] (5)

Suppose, for example, that the measurements of the toxin levels in the two groups revealed a
difference with a z-value of 2.0. On the frequentist viewpoint, standard statistical tables shows that
this implies a P-value of 0.044; as this is less than 0.05, the difference is deemed "significant at the P
= (.05 level". As we have stressed, however, this does not mean that the probability that the
difference really is a fluke is also 0.044; we can only calculate this latter probability via Bayes’s
theorem. Plugging in z = 2 into (5), we find that our data actually imply that Prob(null | data), the
probability the difference is just a fluke, is ar least 0.12. In other words, while the frequentist
methods led us to conclude that the difference was "significant”, the Bayesian calculation pointed to
a much higher probability of the finding being a mere fluke.

This conclusion, moreover, was based on an agnostic prior of Prob(Null) = 0.5. If there are no strong
grounds for believing that the effect is genuine, then - in contrast to frequentist methods - Bayesian
inference allows us to factor in this lack of plausibility explicitly into our analysis. This can have
particularly dramatic effects in the assessment of "anomalous” phenomena (Matthews 1998), as the
following example shows (Nelson 1997).

For over 250 years, Princeton students have attended Commencement on a Tuesday in late May or
early June, an outdoor event for which good weather is vital. According to local folklore, good
weather does usually prevail, prompting claims that those attending may "wish" good weather into
existence. By analysing local weather records spanning many decades, Nelson found that Princeton’s
weather was generally no different from that of its surroundings. However, he did find some
evidence that the town was less likely 1o be rained on during the outdoor events. The phenomenon
gave z-scores as high as 1.996, which on a frequentist basis gives a "significant” P-value of 0.046.
Properly mindful of the implausibility of the phenomenon, however, Nelson was reluctant to take
this "objective” finding at face value, and instead reached a more subjective conclusion: "These
intriguing results certainly aren’t strong enough to compel belief, but the case presents a very
challenging possibility".

A Bayesian analysis allows a far more concrete assessment of plausibility to be made. Clearly, with
such a bizarre claim, there is little one can say about the precise value of a sensible prior probability
for the null hypothesis of no real effect, other than to say that the probability is likely to be pretty
high. In such cases, Bayesian inference still gives valuable insight, as it allows one to estimate the
level of prior probability necessary to sustain a belief that the effect is illusory, even in the light of
Nelson’s data. Using (4) and (3) and z = 1.996, this inverse Bayesian inference shows that Prob(Null
| data) > 0.5 for all Pr(Null) > 0.88 In other words, for anyone whose prior scepticism about the
effectiveness of "wishful thinking" exceeds 90 per cent, the balance of probabilities is that the effect
is illusory, despite Nelson’s data.

As this example shows, frequentist methods greatly exaggerate the "significance" of intrinsically
implausible data. However, as we shall now see, frequentist methods can also seriously exaggerate
both the size and significance of effects in much more important mainstream areas of research, such
as clinical trials.

Misleading "significance" of clinical trial results

Misleading P-values

The most common methods for investigating the efficacy of a new drug or therapy, or the impact of
exposure to some risk-factor, are the so-called randomised clinical trials and case-control studies, in

which a group of people given the new treatment or known to have the disease are compared with a
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“"control" group. One common frequentist method of analysing the outcome is to reduce the results to

a test-statistic {(such as x2 ), which is then turned into a P-value; as before, if this is less than 0.05,
then the difference between the two groups is deemed to be significant. Again, however, a Bayesian
analysis reveals that the real "significance” of such a finding is typically much less impressive than
the P-values imply.

As before, I shall demonstrate this by taking a real-life case. During the early 1990s, research
emerged to suggest that the risk of coronary heart disease (CHD) is associated with childhood
poverty (Elford ef al. 1991). Following the discovery that infection with the bacterium H. pylori is
also linked to poverty, some researchers suspected that the bacterium may form the "missing link”
between the two. Precisely how a bacterium in the stomach might cause heart disease is less than
clear - raising the key issue of plausibility, to which we shall return shortly. Nevertheless, a number
of studies were undertaken to investigate the link between CHD and H. pylori. In one of the first
such studies (Mendall e al. 1994), 60 per cent of patients who suffered CHD were found to be
infected with H. pylori, compared with 39 per cent of normal controls. When the effects of age, CHD

risk factors and current social class had been controlled for, the results led to a xZ value of 4.73.
Using frequentist methods, this leads to a P-value of 0.03, implying that the rate of CHD among
those infected with H. pylori is "significantly” higher than those without.

On the face of it, this finding raises the intriguing prospect of being able to tackle one of the major
killers of the western world using nothing more than antibiotics. Yet while the evidence that both
CHD and H. pylori infection are more common among the poor is suggestive of a link between the
two, it is hardly unequivocal. Such scepticism is underscored by the lack of any convincing
mechanism by which a gastric bacterium could trigger heart disease. The frequentist P-value,
however, cannot reflect any of these justifiable qualms; sceptics of the link have no option but to say
that on this occasion they are just going to ignore the supposed "significance” of Mendall et al. ’s
finding.

In contrast, Bayesian inference requires no such arbitrary "moving of the goalposts": it allows
explicit account to be taken of the plausibility of the findings. In the case of the supposed link
between CHD to H. pylori, the lack of any convincing mechanism balanced against the socio-
economic evidence of a link suggests that an agnostic prior probability of Prob(Null} = 0.5 would be
a reasonable starting-point for assessing results like those found by Mendall et al. . Inserting this into
(3) implies that the probability of the results being due to chance, given the observed data, is

Prob(MNull hypothesis |data} > BFK1+ BF) ®)

where BF is the Bayes Factor for the null hypothesis of chance effect. One can show that forina
wide range of practical situations, including this type of case-control study, the /ower bound on BF is
given by (see, e.g. Berger & Sellke 1987)

BF = (2™ empl(1- 2°)12] @

Inserting the vatue of 3 2=4.73 found by Mendall et a/. into (6) shows that the BF is af least 0.337.
Putting this in (6) we find that Prob(Null | data), the probability that Mendall ef al.’s results are due
to nothing more than chance is at Jeast 0.25. In other words, even using an agnostic prior, the
frequentist P-value has over-estimated the real "significance” of the findings by almost an order of
magnitude.

Those taking a more sceptical view of a link between a gastric bacterium and CHD would, of course,
set Prob(Null) somewhat higher. Applying the concept of inverse Bayesian inference used earlier, it
emerges that even a relatively modest sceptical prior of just Prob(Null) = 0.75 is enough to lead to a
balance of probabilities that Mendall er al.’s findings are entirely illusory.
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Misleading Confidence Intervals

Some defenders of frequentist methods regard criticism of P-values as an attack on a straw man,
pointing out that P-values are increasingly being supplanted by 95 per cent confidence intervals
(Cls), which convey more information about effect size than a single-figure P-value. Yet as we have
seen, frequentist Cls share many of the same problems of interpretation as P-values. Most
importantly, they also share an inability to take into account the plausibility of the hypothesis under
test. As such, 95 per cent confidence intervals are also prone to exaggerate both the size and the
"significance” of intrinsically implausible effects.

In contrast - and as one might expect by now - the Bayesian counterpart of CIs (known as Credible
Intervals or Highest Density Regions), are more comprehensible, more meaningful and more reliable
indicators of real significance. With frequentist CIs, the 95 per cent refers to the reliability of the
statistical test; the Bayesian CIL, in contrast, means precisely what it seems to mean: that there is a 95
per cent probability that the true value of the parameter lies within the stated range.

As already noted, Bayesian Cls are numerically identical to their frequentist counterpart if there is
only very vague prior knowledge about plausible values of the parameter of interest (see e.g. Berger
& Delampady 1987 p 328, and Appendix to this paper). However, such complete ignorance about
the likely size of the effect under study is rarely defensible, and in general frequentist and Bayesian
Cls will not coincide. In such cases, a Bayesian CI is always a more reliable guide to the true
"significance" of a finding than its frequentist counterpart.

Again, let us illustrate this through a real-life example. In the early 1990s, the Grampian region early
anistreplase trial study (GREAT Group, 1992) generated considerable interest in the medical
community, as it seemed to show that heart-attack victims given this clot-busting drug at home had a
50 per cent higher chance of survival than those given the drug once they arrived in hospital. While
there were good reasons for expecting that early intervention with the drug would produce some
improvement, the size of the claimed benefit surprised many. Nevertheless, frequentist measures of
significance appeared to give objective support to the finding: the team found a relative risk (RR) of
death for those given the drug early of 0.52 - i.c. a 48 per cent risk reduction - with a 95 per cent CI
of (0.23 0.97). As this excludes an RR of 1, this surprising result is also "significant” in frequentist
terms, the equivalent P-value being 0.04.

However, as was pointed out shortly after the publication of the GREAT results {Pocock and
Spiegelhalter 1992), a considerable amount of prior information existed with which to assess the
plausibility of the GREAT finding; for example, a much larger European study involving the same
drug pointed to a much smaller benefit. Drawing on this existing knowledge, Pocock and
Spiegelhalter carried out a Bayesian re-assessment of the GREAT results; an outline of how such an
analysis can be performed is given in the Appendix to this paper. The prior information was captured
through a probability distribution which peaked at an RR of 0.83 while giving low probabilities to
RRs greater than 1.0 (no benefit) or less than 0.6 (dramatic improvement). When combined with the
GREAT data, the resulting ("posterior") probability distribution peaked at an RR of around 0.75,
with a 95 per cent Bayesian CI of (0.57 1.0). While still pointing to a more impressive effect than
that suggested by previous studies, the GREAT results emerge from the analysis as markedly less
impressive than suggested by the frequentist methods.

At this point, it is natural to ask whether this Bayesian analysis really did give a more accurate
picture of reality than the frequentist methods. The simple answer is yes. Six years after the
publication of the GREAT findings, the overall picture emerging from international studies is that
early use of clot-busters like anistreplase does indeed confer extra benefit, with RRs of around 0.75
to 0.8 (Fox, quoted in Matthews 1997). This is only half the improvement suggested by the
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frequentist analysis of the GREAT data, but in impressive agreement with Pocock and
Spiegelhalter’s Bayesian analysis.

In a similar vein, the current consensus concerning the supposed H. pylori-CHD link is that a
plausible mechanism relating the two is lacking, and that a causal link remains dubious (Danesh ef
al. 1997). This suggests that the basis of the above Bayesian analysis of the supposed link remains
valid - a conclusion supported by a recent large-scale study that failed to find any convincing
evidence for an association (Wald ef al. 1997).

These cases are hardly the only examples of the tendency of frequentist methods to exaggerate both
effect size and "significance" of clinical findings. Undoubtedly the most disturbing evidence comes
from the continuing failure of many impressive drug trial results to produce similarly impressive
results once approved for general release. It is widely recognised that most new therapies for cancer
and heart disease have proved far less effective than initially believed (e.g. Fayers 1994, Yusuf et al.
1984). Very recently, a UK study uncovered evidence that the use of "clinically proved" drugs for
myocardial infarction since the early 1980s has had no effect on mortality, with death-rates on the
wards at least double those found in trials (Brown ef a/ 1997).

Such a finding would come as no surprise to those familiar with the inherent ability of frequentist
methods to exaggerate both effect sizes and "significance". It is of course perfectly possible that at
least part of the explanation for such disappointing findings lies elsewhere; the greater care taken of
all patients in clinical trials, for example, and the fact that trials tend to be conducted in centres of
excellence. Brown er al. suggest that their disappointing findings may be due to a failure to optimise
the use of the available treatments for myocardial infarction. This highlights another factor in the
continuing failure of Bayesian methods to supplant frequentist methods: the existence of many other
apparently plausible explanations capable of masking the failings of frequentist methods.

"Explaining away" frequentist failures

The most common explanation for studies whose spuriously "significant" findings fail to be
confirmed is that the sample size was too small. This seems plausible enough: after all, everyone
knows that the smaller a sample, the less reliable its conclusions. Yet the argument overlooks two
key facts. First, the calculation of a P-value takes full account of sample size. On the frequentist
viewpoint, we must regard a P-value of 0.03 as "significant” whether it is based on a sample of 10 or
10,000 people; larger samples are just more likely to detect "significance” in smaller effects. And
this is related to the second flaw in the "sample size" defence of frequentist failures. Small samples
are indeed more susceptible to statistical noise than large ones, but only in the sense that their lack of
statistical power makes them more prone to missing real effects. For a given P-value, both small and
large studies of the same quality are equally likely to see "significance” in results that are really due
to chance. As such, blaming the failure of large studies to replicate "significant" positive findings
from smaller studies purely on sample size is simply fallacious.

A more sophisticated, and plausible, defence of frequentist failures is that the original studies were
undermined by biasing and confounding factors. Bias undermines the separation of subjects into
cases and controls, due to, say, misdiagnosis of the disease whose cause is under investigation.
Confounding undermines attempts to link a cause to its effects; for example, failure to take into
account dietary differences can undermine attempts to link carcinogens to observed cases of cancer.

Both bias and confounding are exceptionally difficult to deal with, and undoubtedly explain many
failures to replicate results. For example, when Mendall ef al. applied further controls for the
confounding effect of overcrowding and hot water supplies in childhood risk-factors for infection by
H. pylori, the link between the bacterium and CHD remained, but its P-value was no longer
significant.

file://C:\Documents%20and%20Settings\rattacks\My %20Documents\damnedstatistics... 27/09/2003



Bayesian inference Page 8 of 13

The undoubted power of bias and confounding to undermine clinical research findings has provided
defenders of frequentist methods with a further reason for shunning Bayesian inference. The
argument is that while Bayesian methods may indeed deal more effectively with the risk of seeing
significance in fluke results, it is no better at dealing with bias and confounding than the standard
frequentist methods, and these are typically far more important.

This is also incorrect. Even relatively simple Bayesian analysis does allow concern about bias and
confounding to be taken into account, via the form of the prior probability distribution, in the
assessment of the posterior probability. Similar remarks apply to the supposed inability of Bayesian
methods to take into account the many other potential influences on trial eutcome, from poor
randomisation to the better care received by patients in clinical trials, All these can be captured by a
prior reflecting past real-life experience of just how successful drugs usually turn out to be.

Ultimately, however, all these supposed objections to the use of Bayesian methods serve only to
conceal the key advantage of Bayesian inference: that it offers far greater protection against seeing
significance in implausible results. The importance of this can best be seen through another real-life
example, and one of great contemporary interest: the assessment of the risk of lung cancer faced by
passive smoking of environmental tobacco smoke (ETS). The strongest evidence for this risk is
generally held to be a recent meta-analysis of 37 published studies (Hackshaw et al., 1997). This
found a relative risk (RR) for lung cancer among life-long non-smokers living with smokers of 1.24
with a 95 per cent Cl of (1.13, 1.36). A detailed assessment of both bias and confounding was carried
out, but the central estimate for the RR remained essentially unchanged at 1.26 with a 95 per cent CI
of (1.07, 1.47). On the basis of standard inference methods, this implies a highly "significant" link
between passive smoking and lung cancer (P < 0.005). To underline the credibility of their results,
Hackshaw et al. performed an informal plausibility assessment of their findings, using indirect
measures of the likely intake of ETS by passive smokers. These suggest that passive smokers have
about 1 per cent the exposure to cigarettes of their smoking partners. Assuming smokers typically
consume 25 cigarettes a day, face an RR of 20 and that there is a linear dose-risk relation, Hackshaw
et al. reached an estimate of RR ~ 1.19 for passive smokers.

While broadly similar to the RR found by the meta-analysis, this plausibility argument has itself
been criticised as implausible (Lee 1998, Nilsson 1998 p 20). However, both Hackshaw ef a/. and
their critics underestimate the crucial importance of a much more rigorous assessment of the
plausibility of such weak results. Hackshaw er al. devoted about 10 times more of their paper to the
assessment of bias and confounding than to plausibility; as I now show, however, a Bayesian
analysis reveals that plausibility has a far more dramatic effect on the "significance" of the results.

Of the many criticisms that can be levelled at Hackshaw et al.’s plausibility argument, the most
serious is their rehiance on markers of ETS exposure which are both indirect and not linked to
carcinogenicity. The use of such markers is especially hard to justify in the face of evidence from
direct studies of ETS exposure that consistently point to much lower levels of exposure. An ongoing
series of such studies (see e.g. Phillips ef al. 1994, Phillips ef al. 1998 and references therein) has
found median exposures figures of ~ 0.02 cigarettes a day for the most exposed passive smokers.
Even adopting the same linear dose-risk relation as Hackshaw ef al. (which again is questionable,
Nilsson 1998 pp21-22) this suggests a plausible RR for passive smoking of around 1.02, an excess
risk 10 times lower than that estimated by Hackshaw ef a/. Only the top 10 per cent of the most
exposed passive smokers in the studies by Phillips er al. were found to face anything like the risk
predicted by Hackshaw et al.

Incorporating these results into a plausibility argument via a Bayesian prior distribution leads to an
altogether different view of the risks of passive smoking. Specifically, it suggest that the excess
lung-cancer risk is both 11 times smaller than that given by Hackshaw ef /., and has a 95 per cent CI
of (1.00, 1.04). Bayesian inference thus strongly suggests that the growing consensus that ETS is a
proven and major health risk is misplaced, Whether or not the outconte of this Bayesian analysis will
be borne out is as yet unclear. What is clear is that there is a very real danger of the frequentist
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evidence for a "significant extra" risk from ETS becoming canonical. This, in turn, raises the
possibility that Hackshaw ef al.’s risk figure will be used routinely to subtract out the confounding
effect of passive smoking in future studies of the causes of cancer. If this risk figure has been
substantially over-estimated - as the-above Bayesian analysis strongly suggests it has - attempts to
assess the true risk posed by many other health hazards will be seriously undermined (Nilsson 1997
pl140).

This example of passive smoking and lung cancer provides the final strand in the case for the
widespread and routine use of Bayesian inference in the analysis of data. This can be summed up as
follows:

« It allows both previous knowledge and the inherent plausibility of a hypothesis to be explicitly
taken into account;

« It gives measures of "significance” that are more meaningful than those generated by
frequentist methods;

» These measures have more intuitive and straightforward definitions than their frequentist
counterparts, and are thus much less prone to misinterpretation;

« Bayesian inference is less likely to see "significance” in entirely spurious findings, especially
in poorly-motivated research of low inherent plausibility. As such, it provides more protection
against seriously - even dangerously - misleading findings whose attempted replication or
extension will ultimately prove futile.

Conclusions

In this paper, I have shown that the scientific community has a deeply ambiguous attitude towards
the presence of subjectivity in research. While both desiring and proclaiming objectivity, working
scientists routinely use subjective criteria in their everyday research. The justification is pragmatic,
and entirely reasonable: it is impossible for working scientists to deal with the plethora of new
results and theories that constantly present themselves in any other way. However, mindful of past
abuses in the history of science, the scientific community remains committed to keeping the presence
of subjectivity in the research enterprise to a minimum.

This commitment has led to the widespread adoption of techniques for statistical inference that
appear to be "objective". Known as frequentist methods, they have become central to the research
enterprise, with their outcomes - P-values and 95 per cent confidence intervals - becoming a sine qua
non for acceptance by leading science journals. As I have shown, however, these textbook methods
are neither objective nor reliable indicators of either effect size or statistical significance of research
findings. By failing to take into account the intrinsic plausibility of the hypothesis under test,
frequentist methods are capable of greatly exaggerating both the size and the significance of effects
which are in reality the product of mere chance.

The implicit recognition of these failings by scientific community is evidenced by the way in which
essentially identical results from the supposedly "objective” frequentist methods are interpreted in
entirely different ways, according to the subjective belief of researchers. Thus, a large and "highly
statistically significant” result in parapsychology wiil be ignored, while a small and statistically non-
significant link between passive smoking and cancer will be deemed to "add considerably™ to the
case against environmental tobacco smoke.

The persistent failure of scientists to rid the research process of subjectivity, and the failings of
frequentist techniques, can both be traced to the same fundamental source: the axioms of probability.
These show that in the assessment of hypotheses, subjectivity is mathematically ineluctable. All
attempts to banish subjectivity from the research process are thus ultimately futile, and are at best no
more than exercises in sweeping subjectivity "under the carpet”.
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The vexed problem of subjectivity in science has its solution in those same axioms, however.
Bayes’s theorem provides the underpinning for an entire theory of statistical inference which takes
explicit account of plausibility, and supplies measures of statistical "significance” that are more
relevant, more comprehensible and more reliable than those of frequentist metheds. As such, the
wider adoption of Bayesian inference will undoubtedly save substantial amounts of time, resources
and public money currently spent on futile attempts to replicate "significant” support for intrinsically
implausibie hypotheses.

Some idea of the extent of this waste can be obtained by noting that each month journals covering
disciplines from sociology and psychology to geology and genetics carry many papers claiming to
have results "significant at the 0.05 level" with P-values in the range 0.01 <P < 0.05. Even assuming
that these claims are all sufficiently well-motivated to merit an agnostic prior, it can be shown that
(6) and (7) pomt to ar least a quarter of such claims are meaningless flukes (Matthews 1998). For
research meriting even a very moderate level of scepticism, this proportion rapidly rises to over 50
per cent. This is a finding that should worry anyone concerned with the reliability and funding of
scientific research.

The fact that just two independent clinical trials with results "significant at the 0.05 level" are
sufficient for new therapies to win approval from national regulatory bodies is hardly less worrying.
As so often with frequentist concepts, this P-value standard can and is misinterpreted as implying
that the probability of the therapy being ineffective is less than 1 in 400 (see, e.g. Buyse 1994). The
true proportion will be far higher, especially among therapies whose claims of efficacy are poorly
motivated - a fact reflected in the many cases of where initial enphoria over some new
"breakthrough" turns into disappointment (Yusuf ef al. 1984, Pocock & Spiegelhalter 1992, Fayers
1994, Brown et al. 1997). Bayesian assessment of trial results give regulatory bodies a formal means
of incorporating this crucial "reality check"” into their deliberations. In contrast, the frequentist
methods currently used by regulatory bodies have no means of incorporating such key knowledge:
given the same raw data, they cannot distinguish between streptokinase or snake-oil. A number of
regulatory bodies will accept Bayesian assessments of drug trials; in the light of the above, the use of
such methods should not be optional but mandatory.

Lack of theoretical underpinning has an especially large impact on areas of research such as
parapsychology and alternative medicine. Bayesian inference applied here would certainly cast grave
doubt on claims that appear impressive from a frequentist viewpoint. It is important to stress,
however, that this does not imply that all research into "alternative” or "anomalous" fields should be
abandoned, Bayesian inference merely implies that the standard frequentist criteria for judging
statistical "significance" in these arcas are especially inadequate. It can be shown that in such fields
of research, there are few grounds for viewing as "significant" anyresult whose two-tailed P-value
exceeds 0.003 (Matthews 1998). This value assumes an agnostic prior of Pr(Null) = 0.5, which is
undoubtedly generous for most claims for the existence of anomalous phenomena; even so, the
resulting P-value is 17 times more demanding than the conventional 0.05 criterion used for gauging
significance, and it is clear that many current claims for anomalous phenomena fail to meet it.

Reputable researchers would no doubt feel more confident defending evidence for an anomalous
phenomenon by applying at least a mild level of scepticism in their assessment of significance. In

this case, a P-value of no more than around 2x107% is appropriate, a value 250 times more demanding
than the conventional 0.05 criterion. These technical results can be stated much more succinctly,
however: extraordinary claims require extraordinary evidence. This is a well-attested and widely-
accepted principle, yet it is noticeable by its absence in the mathematics of frequentist inference.

It must also be emphasised that many of the concerns about frequentist inference expressed here
have been recognised by leading statisticians for decades (sce e.g. Jeffreys 1961, Edwards ef al.
1963, Lindley 1970). This inevitably raises the question of why Bayesian inference is still failing to
(re)gain its central role in the scientific enterprise. This is, I believe, due largely to the failure of its
advocates to convey three key facts to working scientists:
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o That while subjectivity may be an unwelcome feature of the scientific process, the axioms of
probability show that it is unavoidable, and that Bayes’s theorem is the correct way to deal
with it;

« That while Bayesian inference does allow subjective prior knowledge to be incorporated into
the assessment of data, such knowledge is not "plucked out of thin air". Rather, it allows an
entirely reasonable yet crucial assessment of plausibility to be factored into the analysis.

« That, in any case, the effect of the choice of prior becomes increasingly irrelevant as data
accumulates, with the only persistent effect of priors being the entirely natural one that
sceptics of a specific claim require stronger evidence to reach the same level of belief than its
advocates.

There is a dangerous irony in the continuing reluctance of the scientific community to adopt
Bayesian inference. For this reluctance stems largely from a deep-rooted fear that adopting methods
that embrace subjectivity is tantamount to conceding that the scientific enterprise really is a social
construct, as claimed by the post-modemn advocates of the "anti-science” movement. The central
lesson of Bayes’s theorem is, however, quite the opposite. It shows, with full mathematical rigour,
that while evidence for a specific theory may indeed start out vague and subjective, the accumulation
of data progressively drives the evidence towards a single, objective reality about which all can

agree.

It is ironic indeed that by failing to recognise this, the scientific community continues to use
techniques of inference whose unreliability undermines confidence in the scientific process, and
which thus threatens to deliver science into the hands of its enemies.

Appendix: Bayesian inference using confidence intervals

A growing proportion of research findings are reported via confidence intervals, in which a central
parameter value, M, is accompanied by a range of values of the form (L , U), which form the so-
called 95 per cent confidence interval (CI) for the results. As discussed in the main article, the
frequentist interpretation of a CI is not as straightforward as it may appear: the 95 per cent figure
refers to the reliability of the statistical test applied, and not to the probability that the true parameter
value lies in the stated range. In contrast, a Bayesian 95 per cent CI (often also called a Credible
Interval) means precisely what it seems to mean: there is a 95 per cent probability that the true value
lies within the stated range.

We now outline the procedure for calculating Bayesian Cls for a given set of data. For both
frequentist and Bayesian Cls, the range (L, U) is calculated from the mean parameter value, M and
its standard deviation SD, via the formulas

L=M-19.8D (AL
IF=M+1968D (A2)

In the textbook frequentist approach, M and SD are calculated directly from the raw data. In the
Bayesian approach, however, the M and SD are the so-called "posterior" mean and standard
deviation, formed by combining the raw values extracted from the data with "prior" values based on
extant knowledge and insight about the effect under study. The resulting posterior mean and standard
deviation thus sets the new findings into their proper context, taking explicit account of their intrinsic
plausibility.

The first step in a Bayesian analysis is thus to capture this prior knowledge and insight. In many real-
life cases, this can be achieved by specifying a Normal distribution which peaks at the most plausible

N
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value for the parameter of interest, M, and whose 95 per cent "tails" (L, U ) reflect the plausible
range of that parameter. The standard deviation of this prior distribution, SD  can then be calculated
from (Al), (A2):

8D, = (T, ~L,)13.92 (A3

The next step is to combine this prior distribution with the experimental data, whose mean is M and
standard deviation is SD ; the resulting "posterior” distribution will have a mean Mp and standard
deviation SDp. It can be shown that Bayes’s theorem leads to a posterior distribution with parameters
given by (see e.g. Lee 1997 Ch 2)

8D, = 118D + (118D, (a4)

M, =(SDpY My 1 SD7) + (i, 15D (A5)

The Bayesian 95 per cent CI then follows putting A4 and A5 into Al and A2; the result is a range of
values for the parameter of value in which the true value will lie with 95 per cent probability. Two
key implications of equations A4 and A5 should be noted. First, they show that the frequentist and
Bayesian definitions of the CI are equivalent only when SD | is infinite, corresponding to a stance of

complete ignorance about the plausible range of values for the parameter of interest. This is rarely
justifiable, and in general the frequentist and Bayesian Cls will not coincide. Equations A4 and A5
also show that the inclusion of prior information has the effect of moving the posterior probability
distribution in the direction of the prior. Thus if results from, say, a clinical trial are strikingly more
impressive than seems plausible, failure to account for this lack of plausibility via a prior distribution
will exaggerate both the size of the effect, and its statistical significance. As we have seen,
frequentist methods cannot explicitly incorporate such plausibility arguments, and are thus especially
prone to lend unjustified credibility to remarkable data.

The growing tendency to state results in terms of frequentist 95 per cent Cls does at least summarise
results in a form that can easily be combined with prior knowledge using the techniques given above,
as I now show.

Example: In their analysis of the GREAT study, Pocock and Spiegelhalter captured the implications
of previous studies via a "prior" relative risk (RR) of death of 0.825, with a 95 per cent Cl of (0.6,
1.0}. To apply the above formulas, a logarithmic transformation has to be applied to the central
estimate and range, and the RRs should be transformed into a so-called Odds Ratio (OR), but in this
particular case the difference between OR and RR can be ignored to a first approximation. Thus we
take the prior distribution to be Normal, with a peak at In(RR ), with its standard deviation SD |

being calculated from A3 using the natural logarithms of the upper and lower ranges of the CI, In
(U,) and In(L ). This leads to a prior distribution that peaks at M, =~ 0.19, with a standard

deviation of 0.13.

To calculate M, and SD;, we note that the GREAT study found a mean RR of 0.515, with a

(frequentist) 95 per cent CI of (0.23, 0.97). We can convert this into the mean and standard deviation
required by A4 and A5 by taking natural logarithms and using A2: this gives M, = — 0.664, and SD,

=0.367. Using A4 and A5 we can now work out the posterior probability distribution; we find Mp =
- 0.245 and SDp =(.123.
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Using A1 and A2 and then transforming back out of natural logarithms, we finally arrive at a
posterior RR figure of 0.78 with a Bayesian 95 per cent CI of (0.6, 1.0). This central risk figure is
substantially less impressive than the value that emerges from the raw data; this reflects the impact
of the inclusion of a prior reflecting the implausibility of gaining so large a risk reduction.
Furthermore, the Bayesian 95 per cent CI encompasses an RR of 1.0, which implies that the
possibility that there is no benefit is not entirely ruled out by this (small) study. As discussed in the
main article, the results of Pocock and Spicgelhalter’s Bayesian analysis ultimately proved more
realistic than those suggested by the raw GREAT data alone.
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David Williams

From: Robert Matthews [r. matthews@physics.org]
Sent: Friday, 26 September 2003 6:44 PM

To: David Williams

Ce: J Enstrom

Subject: credibility of air poliution

Dear Mr Williams,

Thanks for the note. I'm not aware of any work looking at the inherent credibility of the
epidemiology on air pollution; it would be fascinating to see what it throws up. The fechnique
of Credibility Analysis put forward in my papers may well help.

Essentially the question is whether the 95% confidence intervals found by epidemiological studies
are not merely statistically significant but also "credibie”, in the sense that plausible relative
risk/odds ratio values lie outside the CPI corresponding to these quoted 95% Cls.

This is certainly questionable in the case of environmental tobacco smoke (ETS, or "passive
smoking”). The 1997 meta-analysis of case-control studies by Hackshaw et al found a relative risk
figure of 1.26, with a 95% CI corrected for bias and confounding of (1.07, 1.47). Plugging the latter
two figures into the formula given in my paper produces a CP1 of (0, 1.17). Thus the Hackshaw et al
finding may be statistically significant, but it is only credible if plausible values for the risks posed
by ETS greater than 1.17 can be found. Hackshaw et al made a claim for RRs ~ 1.19 in their paper,
which would render their meta-analytic finding credible. However, this was based on some very
questionable assumptions. If instead one uses the results of direct measures of ETS intake (by
personal air monitoring devices) by Phillips et al, they found RRs of around 1.02. These are well
within the CPI for Hackshaw et al's results, which are thus rendered not credible.

A similar approach would doubtless work for other areas of pollution.

I hope this is of some use.
best wishes
Robert Matthews

----- Original Message —---

From: David Williams

To: r.matthews@physics.org
Sent: Friday, September 26, 2003 3:16 AM

Dear Mr Matthews,

! have just revisited your article in the New Scientist (March 8} and read your paper on the same topic on
your website. | am neither a statistician nor a medical researcher, my interest being in air pollution. Some
fairly expensive strategies have beean put in place to reduce air pollution. Much of these have been based
on heaith effects and $ savings from avoided pollution—related injury. | have always been sceptical of much
of the epidemiological and clinical data (gut feeling), and the reasons may weli lie in the statistics used.
Before 1 go to the original documents, have you had chance to look at this or do you know of someone who
has?

Sincerely

27/09/2003



